135912

D 12034

(Pages: 3)

Name..... Reg. No.....

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2021

Mathematics

MTS 3C 03—MATHEMATICS – 3

(2019-2020 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Evaluate $\int_{0}^{1} (t\hat{i} + 3t^{2}\hat{j} + 4t^{3}\hat{k}) dt.$
- 2. The position of a moving particle is $\overline{r}(t) = t^2 \hat{i} + t \hat{j} + t^3 \hat{k}$. Find velocity and acceleration of the particle at t = 2.
- 3. If $z = e^{-y} \cos x$ find $\frac{\partial^2 z}{\partial x \partial y}$.
- 4. Find the level surface of $F(x, y, z) = x^2 + y^2 + z^2$ passing through (1, 1, 1).
- 5. Evaluate $\oint x dx$, where C is the circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.
- 6. Show that $\operatorname{curl} \vec{r} = \vec{0}$.
- 7. State Green's theorem in the plane.

8. Evaluate
$$\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} xyz \, dx \, dy \, dz.$$

9. Write the equation of the circle with centre (1, 2) and radius 4 in the complex plane.

Turn over

135912

D 12034

- 10. Find the value of i^{2i} .
- 11. Evaluate $\oint_{C} \frac{Ze^{z}}{(z-3)} dz$, where C is |z| = 2.
- 12. Evaluate $\oint_{C} \frac{dz}{z}$, where C is |z| = 1.

 $(8 \times 3 = 24 \text{ marks})$

Section B

 $\mathbf{2}$

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Use chain rule to find $\frac{dw}{dx}$ at (0,1, 2) for w = xy + yz; $x = \cos x$, $y \sin x$, $z = e^x$.
- 14. Find the directional derivative of $f(x, y) = \sqrt{x^2 y + 2y^2 z}$ at (-2, 2, 1) in the direction of the negative *z*-axis.
- 15. Find the area lying between the parabola $y = 4x x^2$ and the line y = x using double integrals.
- 16. Use polar coordinates to evaluate $\int_{0}^{2} \int_{x}^{\sqrt{8-x^{2}}} \frac{1}{5+x^{2}+y^{2}} \, dy \, dx.$
- 17. Show that $f(z) = (2x^2 + y) + i(y^2 x)$ is not analytic at any point.
- 18. Evaluate $\oint_{C} \frac{5z+7}{z^2+2z-3} dz$, where C is the circle |z-2|=2.
- 19. Evaluate $\int \operatorname{Re} z \, dz$ along a line segment from z = 0 to z = 1 + 2i.

 $(5 \times 5 = 25 \text{ marks})$

135912

D 12034

3

Section C

Answer any **one** question. The question carries 11 marks.

- 20. Let $\vec{F}(x, y, z) = z\hat{j} + z\hat{k}$ represents the flow of a liquid. Find the flux of \vec{F} through the surface S given by that portion of the plane z = 6 3x 2y in the first octant oriented upward.
- 21. Use triple integrals to find the volume of the solid with in the cylinder $x^2 + y^2 = 9$ and between the planes z = 1 and x + z = 5.

 $(1 \times 11 = 11 \text{ marks})$